e cham "metal-free" photoredox organocatalysis

Kassim Fidaly, Dr. Claire Ceballos, Dr. Maïté Sylla, Pr. Clotilde Ferroud, Pr. Alain Guy

Laboratoire de Transformations Chimiques et Pharmaceutiques, CNRS ERL 3193 Conservatoire National des Arts et Métiers

2 rue Conté, 75003 PARIS kassim.fidaly@gmail.com

Since these last ten years, the number of publications in the field of organocatalysis has dramatically increased in the literature.

The SOMO activation is based on highly reactive radical species. A photocatalytic system in the visible domain could avoid the use of noxious chemical oxidants taken full advantage of a "metal-free "process.

ORGANO-SOMO CATALYSIS

PHOTOREDOX CATALYSIS

Photosensitization

economic fluorescent bulb involves short reaction times.

ntry	Cat. <i>ee</i> (%)	Light source	Time	Conv. (%)	Yield (%)	ee (%)
1	89	fluores. bulb 23W 4000 K	3 h	100	75	60
2	89	fluores. bulb 24 W 6500 K	3 h	100	86	76
3	99	fluores. bulb 24 W 6500 K	2 h	100	quant.	82
4	99	LED 530 nm / EY	3 h	100	86	75

Results after optimization

Entry	Solvent	Time	Conv. (%)	Yield (%)	ee (%)	
1	DME anh.	6 h	92	34	70	Furtr
2	THF anh.	6 h	100	45	63	tridt
3	ACN anh.	6 h	100	48	74	polar
4	DMF anh.	3 h	100	86	76	yleiu
5	DMSO anh.	3 h	100	quant.	75	uecre

ner investigations show an increase in solvent rity provides the best together with a ease in reaction time.

Entry	Conc. C	Time	Conv. (%)	Yield (%)	ee (%)	
1	0.1 M	3 h	100	66	77	In addition, a screening of
2	0.25 M	3 h	100	75	80	concentrations reveals that
3	0.5 M	3 h	100	quant.	82	0.5 M gives the best yields
4	0.75 M	45 min	100	97	78	and ees.
5	1 M	30 min	100	85	79	

5	99	LED 530 nm / RB	3 h	100	66	76
6	99	LED 558 nm / RB	16 h	100	66	84

The use of a daylight 4000 K is unfavourable to both yield and *ee*. Replacement of the fluorescent bulb by an appropriate LED source leads to the same yields and *ees* even so with higher reaction time.

Entry	Catalyst	LiCl	Time	Conv. (%)	Yield (%)	ee (%
1	20 mol%	0	2 h	100	quant.	82
2	10 mol%	0	6 h	87	47	81
3	10 mol%	5 mol%	6 h	89	46	73
4	10 mol%	10 mol%	4 h	100	55	77
5	15 mol%	10 mol%	2 h	100	82	81

The use of LiCl as an additive allowed us to reduce slightly the catalyst amount probably owing to the carbonyl activation in the enamine formation step.

